

Developing students' understanding of science: The role of practical work

Robin Millar

CNE Seminar: Practical Work in Scientific Learning, Lisbon, 12 January 2015

A working definition:

"any science teaching and learning activity in which the students, working individually or in small groups, handle or observe the objects or materials they are studying."

The UK context

- Long tradition of practical work in school science
 - Going back to the late 19th century
 - Reinvigorated by the Nuffield projects of the 1960s
 - Guided discovery learning
 - > Seeing the student as 'a scientist for the day'
 - Public examinations include practical assessment
- Most science lessons for 11-16 year-old students are taught in laboratories
- Schools have laboratory technicians

"In our view, practical work, including fieldwork, is a vital part of science education. It helps students to develop their understanding of science, appreciate that science is based on evidence and acquire hands-on skills that are essential if students are to progress in science. Students should be given the opportunity to do exciting and varied experimental and investigative work."

(UK House of Commons Science and Technology Committee, 2002, para. 40)

"[school science laboratories] are a vital part of students' learning experiences ... and should play an important role in encouraging students to study [science] at higher levels."

(Roberts report , 2002, p. 66)

A teacher in England, asked in an interview about the role of practical work in science teaching:

"It's what science is all about really ... getting on with some experiments. Science is a practical subject You know, end of story, I think." An experienced researcher, writing about his observation of practical work:

"Despite its often massive share of curriculum time, laboratory work often provides little of real educational value. As practiced in many countries, it is illconceived, confused and unproductive. For many children, what goes on in the laboratory contributes little to their learning of science or to their learning *about* science and its methods."

(Donnelly, 1995: 97)

(Hodson, 1991: 176)

Is practical work effective?

- Who is right?
- Might Hodson and the teacher both be right?
- If Hodson is right, what can we do about it?

- To answer this, we need to go back to basics.
- 'Practical work' is too broad a category
 - We need to consider specific practical activities
 - ... and ask: "Is this practical activity effective?"

Is a practical activity effective?

- The starting point for thinking about the 'effectiveness' of any practical activity is to be clear about the intended learning outcome(s) of the activity
 - What do you want the students to learn from it?

Learning outcomes of practical work

Practical activities have a range of intended learning outcomes.

These fall into three main groups:

A. Scientific knowledge

to help students develop their knowledge of the natural world and their understanding of some of the main ideas, theories and models that science uses to explain it

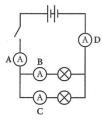
B. Practical skills

to help students learn how to use a piece of scientific apparatus or to follow a standard practical procedure

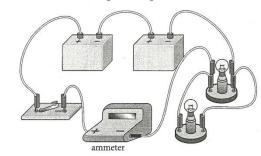
C. Scientific enquiry

to develop students' understanding of the scientific approach to enquiry and their competence in using it in practice

Type A: Scientific knowledge


Investigating parallel circuits :

Aim


To investigate how the electric current splits up in a *parallel* circuit.

Preparation

This diagram shows a circuit with four ammeters for measuring the current at four places: **A B C** and **D**.

You will only have one ammeter, so put it at position A like this:

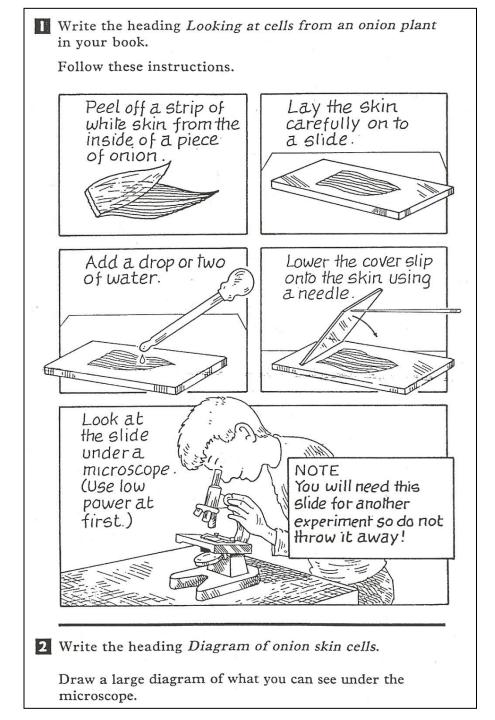
What to do

• Connect up the circuit as shown in the circuit diagram with the ammeter at position A.

2 Check the ammeter is connected correctly.

3 Switch on the circuit.

On't leave the circuit switched on for a long time. When you are not recording the current switch it off so that the batteries do not run down.


If the bulbs both light: record the current in a table like this:

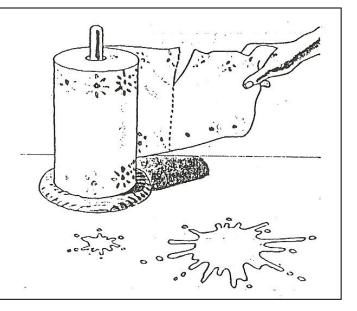
Position of the ammeter in the circuit	Current at this position in amps
A	
В	
С	
D	

(6) If one or both bulbs don't light find the fault by checking each component in turn.

Activity

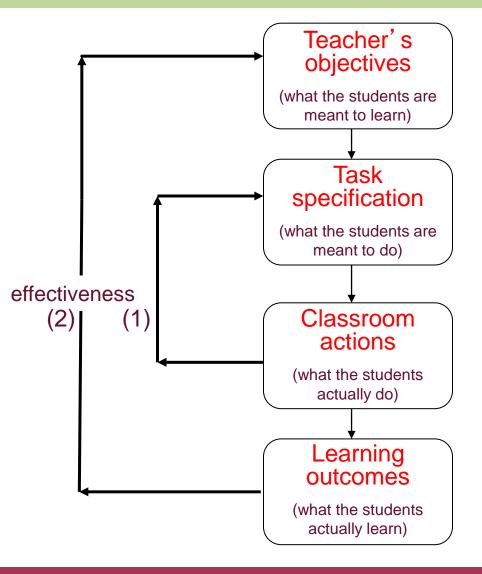
Type B: Practical skills

Type C: Scientific enquiry

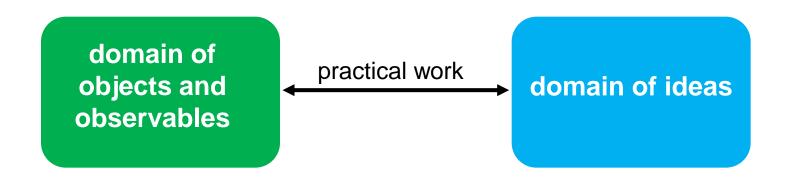

1. Getting soaked

Paper towels are often used in kitchens and washrooms. What do you think makes a *good* paper towel?

You will be given samples of 3 different paper towels, labelled A, B and C.


Your job is to find out which of the towels is best at soaking up water.

Which towel would you recommend to a friend?


Is a practical activity 'effective'?

To say that an activity is 'effective', we have to have some objective in mind.

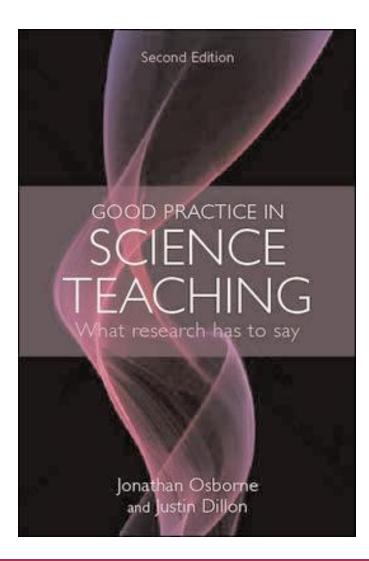
THE UNIVERSITY of York

The fundamental purpose of practical work in science education is to help students make links between two domains of knowledge.

Effective	in the domain of objects and observables	in the domain of ideas
at level (1)		
at level (2)		

Effective	in the domain of objects and observables	in the domain of ideas
at level (1)	If students do the things they were meant to do with objects and materials (and see the things they were meant to see)	
at level (2)		

Effective	in the domain of objects and observables	in the domain of ideas
at level (1)	If students do the things they were meant to do with objects and materials (and see the things they were meant to see)	
at level (2)	If students later recall what they did with objects and materials (and what they saw)	


Effective	in the domain of objects and observables	in the domain of ideas
at level (1)	If students do the things they were meant to do with objects and materials (and see the things they were meant to see)	If students think about what they are doing and what they see, using the ideas they were meant to use
at level (2)	If students later recall what they did with objects and materials (and what they saw)	

Effective	in the domain of objects and observables	in the domain of ideas
at level (1)	If students do the things they were meant to do with objects and materials (and see the things they were meant to see)	If students think about what they are doing and what they see, using the ideas they were meant to use
at level (2)	If students later recall what they did with objects and materials (and what they saw)	If students later show understanding of the ideas the activity is meant to help them learn, and this can reasonably be attributed (at least in part) to the practical activity

What does research have to say about the effectiveness of practical work?

Review of research:

Millar, R. (2010). Practical work. In J. Osborne & J. Dillon (Eds.), *Good practice in science teaching: What research has to say*, 2nd edn. London: McGraw-Hill.

Type A: Scientific knowledge

Do students gain a better understanding of science ideas, concepts and explanations if they have more opportunities to do practical work?

Research evidence

Comparative studies

- Of inquiry-based programmes, mainly in the US, compared with 'typical' instruction
 - No clear evidence of improved conceptual understanding (Minner et al., 2010)
 - Clearest evidence of gains is for ability to handle and manipulate apparatus
- Combustion: England Spain
 - "only a marginal effect on [students'] understanding of combustion" (Watson et al., 1995: 487)
- Teacher demonstration student practicals
 - "overall cognitive effects of small-group practicals and teacher demonstrations do not differ" (Thijs & Bosch, 1995: 320)

Type A: Scientific knowledge

Do students gain a better understanding of a science topic if they have more opportunities to do practical work?

- The research evidence is inconclusive
- Comparisons of student practical work and teacher demonstration show little difference in understanding of scientific ideas
- Comparisons of topics taught with and without practical work also show little difference in conceptual understanding
- Practical work is more effective in increasing students' knowledge of objects and phenomena than in developing their understanding of scientific concepts and explanations

Evidence:

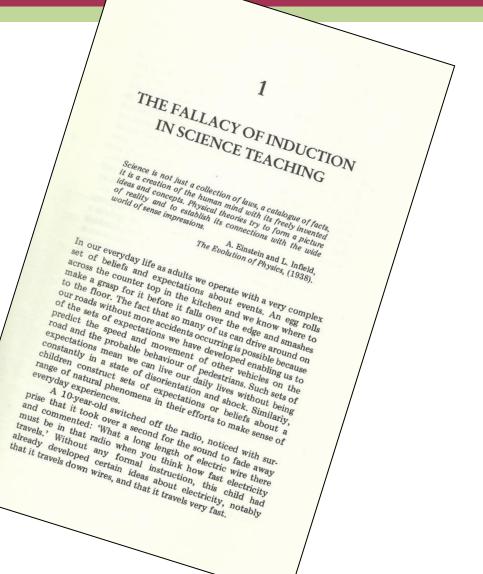
Observation of 25 'typical' science practical lessons in a sample of schools. Interviews with teachers and students

Conclusion:

"Practical work was generally effective in getting students to do what is intended with physical objects, but much less effective in getting them to use the intended scientific ideas to guide their actions and reflect upon the data they collect."

(Abrahams & Millar, 2008: 1945)

Evidence: "Other words, Type A practical work is often in other words, Type in the domain of objects and reasonably effective in the domain of objects Observation of 25 'typical' science practical observables, but not very effective in the domain getting This and reflect upon the data they collect."


(Abrahams & Millar, 2008: 1945)

Department of Education

THE UNIVERSITY of York

Why so ineffective?

Rosalind Driver The Pupil as Scientist?

Why so ineffective?

- Even when students do what they were meant to do, and see what they were meant to see, they often don't draw the conclusion we want them to
 - Theoretical ideas and explanations do not simply 'emerge' from careful observation
 - They have to be communicated by someone who already understands them
 - Practical work can facilitate and enhance this communication – but cannot do the whole job on its own

Some encouraging research evidence

- Applications of ICT using 'virtual manipulatives' (VM)
 - Several recent studies suggest that a combination of activities using VM with others using 'physical manipulatives' (PM) leads to better learning than the use of PM alone
 - For example: Jaakkola & Nurmi, 2008; Zacharia, 2007; Zacharia & Constantinou, 2008

27

Type B: Practical skills

Does direct practical experience help students to develop their skills in handling apparatus and carrying out practical procedures?

- Research confirms that students are better at using equipment and carrying out practical procedures if they have had opportunities to practice doing these, rather than just being shown how to do them.
- There is no research evidence as to whether practical experience also helps students to understand <u>how</u> equipment works, or <u>why</u> standard procedures are followed.

Type C: Scientific enquiry

Do students become better at designing and carrying out a scientific investigation through practice in doing investigative practical work?

- The answer from research is:
 - Student performance is very variable from one investigation to another, even where these appear similar in underlying structure (e.g. Donnelly, 1987; Strang et al., 1991)
 - Ability to design and carry out a simple investigation improves rather slowly with age (e.g. APU, 1991; Zimmerman, 2007)
 - Specific teaching (which includes practical activities) of <u>specific</u> points about investigation design (e.g. the control-of-variables strategy), or data interpretation, can lead to significantly better learning than simply providing opportunities to do investigations (e.g. Chen & Klahr, 1999; Klahr & Nigam, 2004)

Type C: Scientific enquiry

Do students gain a better understanding of the nature of science through the experience of doing practical work?

- Do they gain an understanding of the values and commitments that underpin scientific enquiry, and of the nature of scientific knowledge?
- Little direct research evidence
 - > It is difficult to measure these learning outcomes
 - There is some evidence that interventions <u>specifically</u> <u>designed</u> to develop understanding of the nature of science can be effective

A designed intervention (Carey, Evans, Honda, Jay & Unger, 1989)

- Teaching unit for 12-year-old students (USA)
- To discriminate between two explanations for the role of yeast in making dough rise:
 - Yeast is alive and breathes out a gas
 - There is a chemical reaction between yeast and other ingredients in which a gas is evolved
- Initial views:
 - Many thought knowledge comes directly from observation
 - Scientists are wrong only if they make a mistake, or have not yet looked at the aspect of nature being discussed
- Many were moving beyond such views in the postintervention interviews

An underlying tension

- Is practical work in school science best thought of as:
 - an opportunity for students to discover new knowledge for themselves?
 - a communication strategy, to help learners come to their own understanding of knowledge and ideas that are already well known (to others)?

"The young child is often thought of as a little scientist exploring the world and discovering the principles of its operation. We often forget that while the scientist is working on the border of human knowledge and is finding out things that nobody yet knows, the child is finding out precisely what everybody already knows."

(Newman, 1982: 26)

"at the school level, ... the acquisition of scientific knowledge is inescapably tinged with dogmatism.

... it is difficult to see how both objectives, an understanding of the mature concepts and theories of science and an understanding of the processes by which scientific knowledge grows, can be achieved simultaneously. ... The problem of reconciling these objectives in school science teaching has been considerably underestimated."

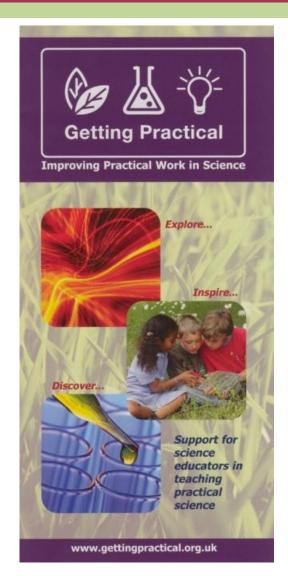
(Layton, 1973: 176-7)

IMPROVING EFFECTIVENESS

Department of Education

35

Improving effectiveness


- Research can only tell us about the effectiveness of practical work as it is currently used.
- So what might we do to make practical activities more effective?

'Getting Practical'

<u>Aim</u>: To improve practical work in school science

<u>Strategy</u>: To provide a framework to encourage teachers to reflect systematically on practical activities they currently use, or plan to use

THE UNIVERSITY of York

There is no 'magic bullet':

- We have to think about individual practical tasks, and ask how each might be made more effective
- A practical activity is more likely to be effective if:
- It has clear and limited learning objectives

The effectiveness of a practical activity will depend on:

- How it is designed
- How it is presented, or 'staged', in class
- How it is integrated into an instructional unit

Auditing your current practice

Objective (in general terms)	Tick ✓ one box to indicate the main objective	Learning objective (more specifically)	Tick ✓ one box
A: By doing this activity, students should develop their knowledge and		Students can recall an observable feature of an object, or material, or event	
understanding of the natural world		Students can recall a 'pattern' in observations (e.g. a similarity, difference, trend, relationship)	
		Students have a better understanding of a scientific idea, or concept, or explanation, or model, or theory	
B: By doing this activity, students should learn how to use a piece of		Students can use a piece of equipment, or follow a practical procedure, that they have not previously met	
laboratory equipment or follow a standard practical procedure		Students are better at using a piece of equipment, or following a practical procedure, that they have previously met	
C: By doing this activity, students should develop their understanding of the		Students have a better general understanding of scientific enquiry	
scientific approach to enquiry		Students have a better understanding of some specific aspects of scientific enquiry	

1 Learning objective(s) (or intended learning outcome(s))

If you have ticked this box, please complete the table below

·▼	
Specific aspects of scientific enquiry	Tick ✓ <u>all</u> that apply
How to identify a good investigation question	
How to plan a strategy for collecting data to address a question	
How to choose equipment for an investigation	
How to present data clearly	
How to analyse data to reveal or display patterns	
How to draw and present conclusions based on evidence	
How to assess how confident you can be that a conclusion is correct	

Γ

2 Design

2.1 How open/closed? (Tick ✓ <u>one</u> box)	
Question given, and detailed instructions on	
procedure	
Question given, and outline guidance on	
procedure; some choices left to students Question given, but students choose how to	
proceed	
Students decide the question and how to	
proceed	
2.2 Logical structure of the activity (Tick \checkmark one box)	
Collect data on a situation, then think about	
how it might be summarised or explained	
Use current ideas to generate a question or	
prediction; collect data to explore or test	
Other. Please describe:	
2.3 Importance of scientific ideas (to car the activity well) (Rate: 4= essential; 3=fairly; 2=not very; 1=unimportant)	ry out
Importance of an understanding of scientific ideas	
2.4 What students have to do with object	ts and
materials (Tick ✓ all that apply)	
Use an observing or measuring instrument	
Follow a standard practical procedure	
Present or display an object or material	
Make an object	
Make a sample of a material or substance	
Make an event happen (produce a	
phenomenon) Observe an aspect or property of an object,	
material, or event	
Measure a quantity	
2.5 What students have to 'do' with idea	\$
(Tick \checkmark all that apply)	
Report observations using scientific	
terminology	
Identify a similarity or difference (between	
objects, or materials, or events)	
Explore the effect on an outcome of a specific	
change (e.g. of using a different object, or	
material, or procedure) Explore how an outcome variable changes	
with time	
Explore how an outcome variable changes	
when the value of a continuous independent	
variable changes	
Explore how an outcome variable changes	
when each of two (or more) independent	
variables changes	
Design a measurement or observation	
procedure Obtain a value of a derived quantity (i.e. one	
that cannot be directly measured)	
Make and/or test a prediction	
-	
Decide if a given explanation applies to the particular situation observed	
Decide which of two (or more) given	
explanations best fits the data	
Suggest a possible explanation for data	

3 Presentation

3.1 How is the purpose, or rationale,	
communicated to students?	
(Tick ✓ <u>one</u> box)	
Activity is proposed by teacher; no explicit	
links made to previous work	
Purpose of activity explained by teacher, and explicitly linked to preceding work	
Teacher uses class discussion to help students	
see how the activity can help answer a	
question of interest	
Purpose of activity readily apparent to the	
students; clearly follows from previous work	
Activity is proposed and specified by the	
students, following discussion	
3.2 How is the activity explained to stude (Tick ✓ all that apply)	ents?
Orally by the teacher	
Written instructions on OHP or data projector	
Worksheet	
(All or part of) procedure demonstrated by teacher beforehand	
3.3 Whole class discussion before the pra	actical
activity begins? (Tick ✓ all that apply	
None	
About equipment and procedures to be used	
About ideas, concepts, theories, and models	
that are relevant to the activity	
About aspects of scientific enquiry that relate to the activity	
3.4 Whole class discussion following the	
practical activity ? (Tick ✓ all that app	nlv)
None	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
About confirming 'what we have seen'	
Centred around a demonstration in which the	
teacher repeats the practical activity About how to explain observations, and to	
develop conceptual ideas that relate to the task	
About aspects of investigation design, quality	
of data, confidence in conclusions, etc.	
3.5 Students' record of the activity	
(Tick ✓ <u>one</u> box)	
None	
Notes, as the student wishes	
A completed worksheet	
Written report with a given format	
Written report in a format chosen by the student	
Other. Please describe:	

4 Learning demand

In the light of your entries above, how would	1 you
judge the learning demand of this activity?	
(Rate: 5=very high; 4=fairly high; 3=modera	ate;
2=fairly low; 1=very low)	
Learning demand	

5 Assessment of effectiveness when used

A Effectiveness at level (1)

Key question: Did students do what they were intended to do, and see what they were intended to see?

		Mainly	Mainly	Not
	1	yes	no	applicable
1	Did students know how to use the equipment involved?			
2	Were students able to set up the apparatus, and handle the materials involved, correctly and safely?			
3	Were students able to use the apparatus with sufficient precision to make the necessary observations or measurements?			
4	Were students able to carry out any routine procedures involved?			
5	Were students able to follow any oral or written instructions given?			
6	Did students observe the outcome(s) or effect(s) you wanted them to see?			
7	Could students explain the purpose of the activity if asked? (what they were doing it for)			
8	Did students talk about the activity using the scientific terms and ideas you would have wished them to use?			

Available as a free download from:

http://www.york.ac.uk/media/educat ionalstudies/documents/research/An alysing%20practical%20activities.pdf

B Effectiveness at level (2)

Key question: Did students learn what they were intended to learn?

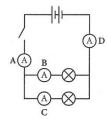
		Most	Some	Only a few
1	How many students could recall what they did, and the main features of what they observed?			
Sun	marise the evidence for your answer above:			
		Most	Some	Only a few
2	How many students have a better understanding of the ideas the activity was intended to help them understand?			
Sun	imarise the evidence for your answer above:			

Design and staging: The key issues

 To be effective, activities must be 'minds-on' as well as 'hands-on'

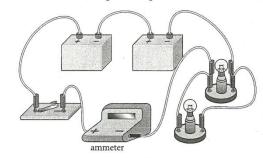
- Students need to be thinking about what they are doing, and why they are doing it, not just following instructions or routines
- Design the task, and plan its staging, to help students build bridges between the domain of observables and the domain of ideas

How might you modify a practical activity to make it more 'minds-on'?


Investigating parallel circuits

Aim

To investigate how the electric current splits up in a *parallel* circuit.


Preparation

This diagram shows a circuit with four ammeters for measuring the current at four places: **A B C** and **D**.

Activity

You will only have one ammeter, so put it at position A like this:

What to do

• Connect up the circuit as shown in the circuit diagram with the ammeter at position A.

2 Check the ammeter is connected correctly.

Switch on the circuit.

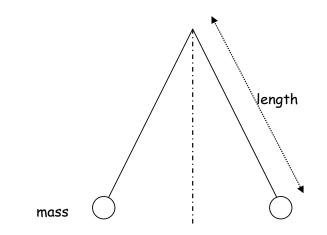
O Don't leave the circuit switched on for a long time. When you are not recording the current switch it off so that the batteries do not run down.

G If the bulbs both light: record the current in a table like this:

Position of the ammeter in the circuit	Current at this position in amps
A	
В	
	14
D	

(6) If one or both bulbs don't light find the fault by checking each component in turn.

How might you modify this activity to make it more 'mindson'?


Ways of improving 'Investigating parallel circuits'

- Don't do it until you are sure most (ideally all) know how to measure the electric current at a given point in a circuit
 - If necessary, have a previous Type B practical task on just this skill
- Convert to a POE (Predict-Observe-Explain) task
 - What would you expect to notice if you measured the electric current at A, B, C and D? Write down your prediction.
 - Now do it and see if your predictions are correct.
 - Whether you were right or not, now explain your results.

Investigating how a pendulum swings

A pendulum consists of a mass tied to a string, hanging from a fixed point.

Your task:

• Investigate how the time for 10 swings of a pendulum depends on the mass of the object tied to the string.

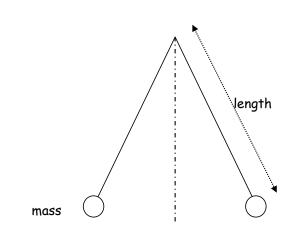
Equipment provided:

- A fixed support to hang your pendulum from
- Five lengths of string: 20 cm, 40 cm, 60 cm, 80 cm and 100 cm
- Five objects to hang on the string: 20g, 40g, 60g, 80g, 100g
- A digital stopwatch

How might you modify this activity to make it more 'mindson'?

Ways of improving 'Investigating how a pendulum swings'

- If you are using it as a Type A practical
 - Convert to a POE


- If you are using it as a Type C practical
 - Restrict the number of measurements

Modification 1: Convert to a POE

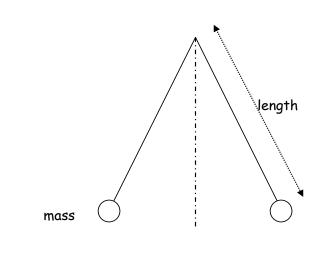
Investigating how a pendulum swings

A pendulum consists of a **mass** tied to a **string**, hanging from a **fixed point**.

Your task:

- How do you think the time for 10 swings will change if you change the mass on the string? Write down your prediction.
- Use the equipment provided to test if your prediction is correct.

Equipment provided:


- A fixed support to hang your pendulum from
- Five lengths of string: 20 cm, 40 cm, 60 cm, 80 cm and 100 cm
- Five objects to hang on the string: 20g, 40g, 60g, 80g, 100g
- A digital stopwatch

Modification 2:

Restrict the number of measurements

Investigating how a pendulum swings

A pendulum consists of a **mass** tied to a **string**, hanging from a **fixed point**.

Your task:

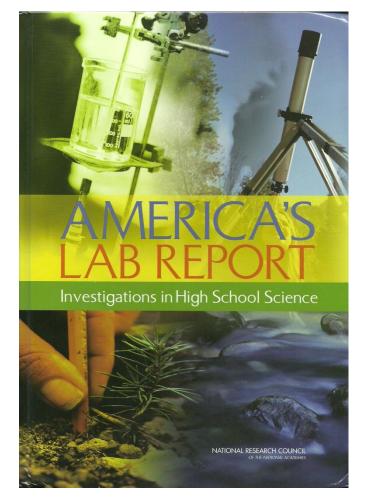
• Investigate how the time for 10 swings of a pendulum depends on the mass of the object tied to the string. You are allowed to take just three measurements.

Equipment provided:

- A fixed support to hang your pendulum from
- Five lengths of string: 20 cm, 40 cm, 60 cm, 80 cm and 100 cm
- Five objects to hang on the string: 20g, 40g, 60g, 80g, 100g
- A digital stopwatch

Focusing on the staging of a practical activity

- Make sure the practical activity grows naturally out of the topic and the ideas the students are studying
- Help students to see the *purpose* of the activity
 - What are they doing it *for*?
 - What question might it help them to answer?
 - How might it advance their understanding?



- What do I want students to learn from carrying out this practical activity?
 (objective)
- What do students think they will learn from carrying out this activity?
 (purpose)

A useful exercise: After a practical activity, ask some students what they think they have learned from it – and see if it matches your intentions.

Integrated instructional units

(National Research Council, 2006)

- Rather than thinking about individual practical activities in isolation, it may be more productive to think about 'instructional sequences that include laboratory experiences along with lectures, reading and discussion' (p. 195)
- Although research on such sequences (or units) is still quite limited, there is evidence that they are more effective than 'traditional' (isolated) practical experiences.

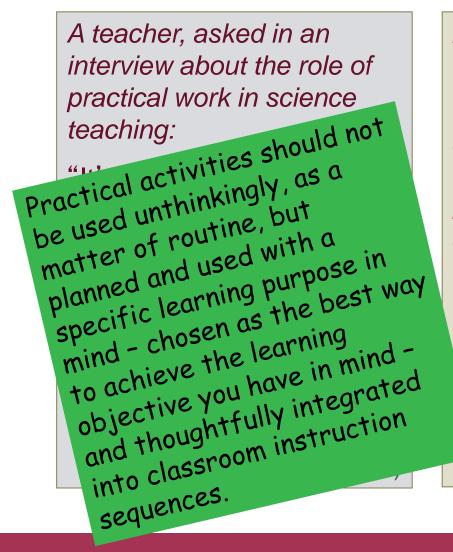
"Four principles of instructional design can help laboratory experiences achieve their intended learning goals if(1) they are designed with clear learning outcomes in mind,(2) they are thoughtfully sequenced into the flow of classroom science instruction,(3) they are designed to integrate learning of science

content with learning about the processes of science, and (4) they incorporate ongoing student reflection and discussion." (p. 197)

(From: National Research Council (2006). *America's Lab Report: Investigations in High School Science.* Washington, DC: The National Academies Press.)

A teacher, asked in an interview about the role of practical work in science teaching:

"It's what science is all about really ... getting on with some experiments. Science is a practical subject You know, end of story, I think." An experienced researcher, writing about his observation of practical work:


"Despite its often massive share of curriculum time, laboratory work often provides little of real educational value. As practiced in many countries, it is illconceived, confused and unproductive. For many children, what goes on in the laboratory contributes little to their learning of science or to their learning *about* science and its methods."

(Donnelly, 1995: 97)

(Hodson, 1991: 176)

Two views on practical work

An experienced researcher, writing about his observation of practical work:

"Despite its often massive share of curriculum time, laboratory work often provides little of real educational value. As practiced in many countries, it is illconceived, confused and unproductive. For **children**, what goes on in the As practiced' in learn ... it doesn't have to be like this; labo lea we can do better. (Hodson, 1991.

